Micah

Homotopy Hypothesis: there should be a theory of "n-categories" where the n-groupoids are models of "n-types" n-type: a space X where $\pi_{\kappa} X = 0$ for $\kappa > n$ Ex if X is a l-type, then TT X is a l-groupoid fundamental groupoid Taking n=20, ~-groupoids should be homotopy types If ne want to study (~, 1)-categories, this suggests that we should be able to model these by categories enriched in "spaces" (homotopy types) If he model ocats by quasi-categories, then this "idea" holds (Janis & Micah fight) category of compactly generated weak Hausdorff spaces Top Εx $Map_{Top}(X, Y)$ as the set of continuous maps with the compact-open topology

Top: $X \xrightarrow{ - } X$: s Set	
is a Quillen adjunction.	
So, categories enriched in "spaces" should be the same as categories enriched in sSet)
$Map(X,Y) \times Map(Y,Z) \longrightarrow Map(X,Z)$	
$ Map(X,Y) \times Map(Y,Z) \longrightarrow Map(X,Z) $ $ Map(X,Y) \times Map(X,Z) $	
Cats is the category of simplicially-enrichen categories, Catrop is topologically-enrichen categories	ط ولم
So geometric realization induces a functor Cata > Catap	
Sing(-) also commutes with limits, so the same property holds	
$C \in Cat_{D}$, $N(C)_{o} = objects$	
$N(\mathcal{E}) = Hom_{\mathcal{E}}(-, -) \qquad \mathcal{P}_{\mathcal{F}}Y_{\mathcal{A}}$	
a 2-simplex in N(E) is a diagram X - 3-2	

but in this case h=gof; but we just want h=gof $N(C)_{z} = Hom_{Cat}([2], C)$ (i.e. Fin ([2], C)) Recall $\varphi_{02} = \varphi_{12} \cdot \varphi_{01}$ Idea: freely add elements to hom sets of [n] s.t. $f_{ij} \neq f_{jm} \circ f_{ij}$ $S[2] \xrightarrow{\varphi_{o1}} \frac{\varphi_{o1}}{\varphi_{o2}} \xrightarrow{\varphi_{o2}} \varphi_{o2} \neq \varphi_{o1} \circ \varphi_{i2}$ Define S[n] to be this "thickened up" version of [n] So now a functor S[2] -> C is the $x \xrightarrow{f \to Z} x \xrightarrow{h} z$ and of a homotopy This is a functor $\Delta \rightarrow Cats$ which sends [n] to S[n].

So define a simplicial set N(E) $Hom_{sSet}([n], N(C)) \cong Hom_{Cat_{s}}(S[n], C)$ R_{MK} sSet := $Fin(\Delta^{op}, Set)$ the Yoneda embedding realizes this as the "colinit completion" of A So functors out of Δ into a category E with colimits are equivalent to colimit - preserving functors sSet $\rightarrow C$. So, our functor $\Delta \rightarrow$ Cats lifts to a colimit-preserving functor sSet \rightarrow Cats Adjoint functor than implies that there exists a functor Cats -> sSet right adjoint to the first S: Set => Carts: N To recap: To any simplicial cat $C \in Cot_{A}$, we obtain a 5Set, N(C)Then N(C) is an ∞ -cat N and S are equivalences Then these functors

def The topological nerve

$$Cat_{Top} \rightarrow SSet$$

is defined by $N \cdot Sing(-)$
 $\not \equiv Top is now an co-cat by association
it with its topological nerve
Mapping Spaces in co-categories
Let \mathcal{C} be an co-cat
for two objects $x, y \in \mathcal{C}$,
 $Mape(X, Y) := Map_{hS}(X, Y)$
i.e. $S(\mathcal{C})(X, Y) \in \mathcal{H} \rightarrow simplicial sets localized
of weak equivalences$$

No obvious maps $Map_{hs}(X, Y) \times Map_{hs}(Y, Z) \longrightarrow Map_{hs}(X, Z)$

Jánis

S: A -> Cats extends to S: sSet -> Cats with right adjoint N: Cats -> sSet Ho: sSet at : N (not simplicial nerve) See HTT 1.2.3, Cisinski 1.4-1.6 "Boardman-Vogt constr." Let C. be an so-cat. Goal: Construct a 1-cat Ho(C). Construct $\pi(\mathcal{C}) \cong H_0(\mathcal{C})$ What is a l-cat? - objects - morphisms - composition - identity morphisms - associativity of comp. $Ob(\pi(\mathcal{C})) = C_o$ Morphisms: For every $(\varphi: \Delta' \rightarrow \mathcal{C}) \in \mathcal{C}$, put $\varphi \in Edge(\varphi(o), \varphi(1))$ We also have $id_X \in Edge(X, X)$ (degen. 1-simplex)

def for $X, Y \in Ob(\pi(\mathcal{C})) = \mathcal{C}_o$, let $Hom_{\pi(e)}(x, y) = Edge(x, y)/homotopy$ $(\Psi: \Delta' \longrightarrow \mathcal{C}) \in \mathcal{C}_1 \longrightarrow \overline{\Psi} \in Edge(x, \gamma) \longrightarrow [\overline{\Psi}] \in Ham_{\overline{\mathcal{U}}}(\Psi(o), \Psi(I))$ Composition: $[\overline{\Psi}] \in Hom_{\pi(e)}(X, Y), \overline{\Psi} \in Hom_{\overline{\pi}(e)}(Y, Z)$ $\begin{array}{ccc} & \overleftarrow{\varphi} & & & \\ & \chi & & \\ & \chi & & Z \\ & & \chi^2 & \rightarrow \mathcal{C} \\ & & & \chi^2 & \rightarrow \mathcal{C} \end{array}$ $\left[\overline{\varphi} \right] \circ \left[\overline{\varphi} \right]_{iz} \left[\overline{d}, \sigma \right]$ Is comp, well defined? $\chi \xrightarrow{\overline{\psi}} \gamma \xrightarrow{\overline{\psi}} \overline{5}, \overline{\psi} \xrightarrow{\overline{12}} z$ O Choice of J is ok: $\begin{array}{c} \bigwedge_{i}^{3} \longrightarrow \mathcal{C} \\ \Sigma_{i}^{2} & \longrightarrow \mathcal{C} \end{array}$ $d_z d_i T = d_i \sigma$ Now $d_1 T \leq shows that$ $<math>d_1 \sigma \sim d_1 \sigma'$ $d_1d_1T = d_1\sigma'$ $d_0d_1T = id_2$

Choice of Fisok: (Z)

So d, τ says: $[\overline{\Psi}] \circ [\overline{\Psi}] = [d, d, \tau]$ = $[\overline{\Psi}] \circ [\overline{\Psi}].$

3 Choice of $\overline{\Psi}$ is ok:

• View a le Cat, as le Cato. Then Ho(l)= l, since lyz= l. · Let X be a top. space. Then Ho(Sing(X)) = II, X Let C & Cato, then N(E) & Cato.
 If Mape(X,Y) is a Kan complex,
 then Ho(N(E)) = hC

ΞX

Maximilien

limits and colimits in so-categories

Goal: introduce the notion formally then present an equivalent approach with homotopy (co)limits via topological (or simplicial) enrichments $\frac{def}{p: K \rightarrow C} \quad be \quad an \quad p-category. \quad bet$ $\frac{def}{p: K \rightarrow C} \quad be \quad a \quad map \quad of \quad simplicial$ $\frac{sets.}{object} \quad A \quad \underline{limit}_{P} \quad of \quad P \quad is \quad a \quad final$ $\frac{object}{object} \quad in \quad C_{P}. \quad A \quad \underline{colimit}_{P} \quad of \quad P \quad is$ $an \quad initial \quad object \quad in \quad C_{P}.$ O Quick reminder for ordinary categories C an ordinary cat, $X \in Ob(C)$. Over category $C_{/X}$: $Ob: \begin{array}{c} X' \in C \\ X \end{array}$ Can be generalized: X:[0] ~ C S cat ul 1 obj + 2 Given a functor $p: I \rightarrow C$ denote by C/p the slice category of comes of p.

CIP are objects of the form $P(i) \longrightarrow P(j)$

Dually we have notion of cocones Cp. Recall: lim(p) = terminal object of Cp1.

(2) Joins of ∞ -cats Given A, B ordinary cats, define $A \neq B$: $Ob(A \neq B) = Ob(A) \perp Ob(B)$ $Hom_{A \neq B}(X, Y) \begin{cases} Hom_{A}(X, Y), X, Y \in A \\ Hom_{B}(X, Y), X, Y \in B \\ \#, X \in A, Y \in B \\ \#, X \in B, Y \in A. \end{cases}$ def $[0] \neq B =: B^{4}$, the category of cones of B

 $B \neq [0] = B^{\flat}$, the category of coords of B

 $def \Delta^{\circ} \neq L =: L^{\triangleleft}$ cone of L $K \neq \Delta^{\circ} =: K^{\diamond}$ cocone of K $\underbrace{ex}_{C_{2}} \wedge \underbrace{\wedge}_{2}^{c} = \underbrace{c_{o}}_{C_{0}} \xrightarrow{c_{i}}_{C_{2}}$ $\left(\bigwedge_{z}^{z}\right)^{q} \cong \bigtriangleup' \times \bigtriangleup'$ $(0,0) \longrightarrow (1,0)$ $(0,1) \xrightarrow{(1,1)} (1,1)$ (3) Sliced &-categories In ordinary categories, given a functor $P: A \rightarrow B$, notice B_{P} , is characterized F. (P P) = F $\operatorname{Fun}(\mathcal{C}, \mathcal{B}_{P}) \cong \operatorname{Fun}(\mathcal{C} \diamond \mathcal{A}, \mathcal{B})$ $C A \rightarrow B$ TA P Cz[o] A = ..., !Bp/ = $P(\cdot) \longrightarrow P(\cdot)$

Worthwhile rewriting the iso: $Mor_{cat}(C, B_{/p}) \cong Hom_{cat_{A/2}}(A, A)$ Prop. Let p: L->C a map of sSet where C is an os-cat. Then there is an os-cat Cp, characterized by $\forall K \in Sct : [-lom_{sSet}(K, C_{p}) \cong Hom_{sSet_{L}}(K, L)$ $(\mathcal{L}_{/p})_{n} = Hom_{sSetly} \begin{pmatrix} L \\ \Delta^{n} + L \end{pmatrix}, \quad \stackrel{L}{\notin} P$ (Dually, we have C/p where replace K&L with L∞K) (7) initial objects/final objects An obj XEC is final if in its

6 00-(co) limits as homotopy (co)-limits Unpacking the definition: Im (K=) is the final object of C/p. An object of Cp/ is a vertex of (Cp/)o. Recall: $(C_{P})_{0} = Hom_{sSet_{K}} \begin{pmatrix} K & K \\ \downarrow & \downarrow \\ K & \downarrow & \downarrow \end{pmatrix}$ i.e. a functor $\overline{p}: K^{\delta} = \Delta^{\circ} * K \rightarrow \mathcal{C}$ such that $\overline{p}|_{k} = p$ we denote $\overline{p}(-\infty) \in C$ as lim(p) \longrightarrow the usual nerve preserves (co) limitsOften Recall Given an so-cart C, it is aniduit topologically (or simplicially): given objects X, Y EC, Mape(X, Y) can be regarded as the object in the homotopy category of spaces representing the space of maps from X to Y in Ho(C)

Recall Z: For usual limits in ordinary conts: let $L = \lim (I \xrightarrow{p} C)$, then $\forall X \in C: Map_{\mathcal{L}}(X, L) \xrightarrow{\simeq} Mor_{\mathcal{L}}(\underline{X}, p)$ Const. diag. Prop Let C be an or-cat and Kasset, p: K -> C a sSet map. Then $\overline{p}: K^{\uparrow} \longrightarrow C$ is a limit of $p = \overline{p}|_{K}$ if ue denote L= p(-∞), ∀XeC, $Map_{e}(X,L) \xrightarrow{\sim} Map_{Fin}(x,c)(X,p)$ Ex Recall that homotopy product in Top is given by the product in Ho(Top) If C is a topological cat, then homotopy product IT Y & C is determined $\forall X \in \mathcal{C}$: $Map(X; TTY_{x}) \xrightarrow{\sim} TTMap(X, Y_{x})$ weak

 $\{(x, y, h) \in X \times Y \times Map([0, 1], Z) \mid h(o) = f(x), h(l) = g(y) \}$ $\leq X \times Y \times Map(0,17,2)$ For a topological cat C, P is a htpy pullback of X > Z in C if: $\forall W: Mape(W, P) \xrightarrow{\sim} Map(W, X) \times Map(W, Z)$ def Let C be a topological atogory. Define the topological nerve of É: $N_{Top}(C) = N_{S}(Sing(C))$ $\frac{def}{defined} \begin{array}{c} Let S \\ be \\ fined \\ M_{S}(Kan) \\ or \\ N_{Top}(CW) \end{array}$

This Let I, C be topological categories, Let $p: I \rightarrow C$ be a continuous functor. Suppose we have a come $(C, \xi \eta_i : C \rightarrow \rho(i)_{i \in \mathbb{T}}), (C, \xi \eta_i \xi)$ $P = N_{Top}(P) : N_{Top}(I) \rightarrow N_{Top}(E)$ can be extended to a functor $\overline{P}: N_{Top}(I)^{\mathcal{H}} \longrightarrow N_{Top}(\mathcal{C})$ is an $\mathcal{O}-limit$ in N_{Top} (C). s = in spaces ζ ε topological enrichments I statement for simplicial as well any co-cat

Havry Presentable (ordinary) categories -bridge the gap between small categories and proper classes - Presentable categories are "generated" by Small categories Ex Ab is a proper class, but Abfy is small for any small A, we have cocomplete presheat category Fun (AOP, Set) Recall A yoneda Fin (A^{op}, Set) X Hom (-,x), think of this B C oc omplete cocomplete The For A small and C cocomplete, the restriction to A along the Yourda embedding gives an equivalence Fung (Fun (A°, Set), C) ~> Fin (A, C) colim preserving functors

 $Cor A = *, Fun^{-}(Set, C) \xrightarrow{\sim} C$ Then (Adjoint Functor Than) (Freyd) For F: C > D, C, D cocomplete, F is a left adjoint if and only if F preserves colimits and the "solution get condition" is satisfied SSC: Some class of morphisms is a set Presentable categories form a suitably large class of categories for which we can drop SSC. def let K be a regular cardinal. Then a K-filtered colimit is given by a filtered system where objects + morphisms are less than K. A category C is <u>x-accessible</u> if it contains some small subcat D=C such that: every XEC is a <u>x-filtered</u> colim of objects in D(D-)C is dense) · for dED, Hom (d, -) commutes with X-filtered colimits (d's ave x-compact in C)

def C is accessible if it is x-accessible for some x and F: C->D is accessible if it preserves filtered colimits def A category C is presentable if it is accessible + cocomplete Note: Any presentable cat is also complete Ex. Set, as generated by * · Any presheaf category on a small category Fin(A^{op}, Set) • $sSet = Fin(\Delta^{op}, Set)$ · Mode generated by f.g. projectives · Ch(R) generates by perfect complexes · Quasicoherent Ox - modules on any scheme Classification for presentable categories A category C is presentable if and only if it is a localization of a presheaf category) on a small category accessible

A youndary Full (A op Set) localization freegeneration relations Adjoint Functor Thm for Presentable Categories: $F: \mathcal{C} \longrightarrow \mathcal{D}, \mathcal{C}, \mathcal{D}$ presentable OF is a left adjoint if and only if it preserves colimits (2) F is a right adjoint if and only if it preserves limits and is accessible. Presentable *∞*-categories Recall ∞ -category of spaces $S = N_{\Delta}(kan)$ for some small simplicial set K, define *∞*-cat of presheaves $\mathcal{P}(K) := Fin(k^{op}, S)$ Recall We have an adjunction (C[-], NA): 5 Set = Cata Simplicient thickening

For some simplicial set, take
$$C[K]$$
 and $C[K]$
 $C[K] \times C[K^{op}] \longrightarrow Kan$
 $(X, Y) \longmapsto Sing[Hom_{QX]}(X, Y)]$
We compose
 $C[K \times K^{op}] \longrightarrow C[K] \times C[K^{op}] \longrightarrow Kan$
pass to adjoint
 $K \times K^{op} \longrightarrow N_{\Delta}(Kan) \cong S$
exponential law
 $K \longrightarrow Fin(K^{op}, 5)$ this is ∞ -yoneda
embedding
- Fully faithful and satisfies necessary
Universal property
The Fun⁴(P(D), C) \implies Fin(D, C)
Cor Take $D = \Delta^{o}$, get Fun⁴(S, C) $\Longrightarrow C$
"The ∞ -cat of spaces is freely generated
by the zero simplex Δ^{o} "

det An or-cat is <u>presentable</u> if it is cocomplete and accessible. A functor between *m*-cats is a localization if it has a fully faithful vight Classification of presentable x-cats D-cat C is presentable if and only if it is an accessible localization of P(D) for some small D-cat D. Towards inderstanding accessible localizations of a - categories: (L, R): C=D, denote L: C-D-Cas well let SL = the class of maps in C sent to equivalences by L Localizations are completely determined by SL In this case $S_L \subseteq F_{in}([1], C)'$: · Closed under colimits · Stable under retracts · 2-outof-3 · contains equivs · Stable Under coloase change

Lurie calls such a class strongly saturated Intersections of strongly saturated classes are also strongly saturated, and Fin([i], C) is also strongly saturated So for any T & Fun ((1], C) there is some minimal strongly saturated closure T ?T Say Sis of small generation if S=T for some small T $Thm (Lurie) C presentable <math>\infty$ -cat, $S \subseteq Fin([1], C)$ is strongly saturated of small generation if $S = S_L$ for some accessible localization $L: C \longrightarrow C$ Relation to model categories det A mobel category is it is presentable and <u>combinationial</u> if cofilorantly generated cofibrations are generated by a set The An a -cat C is presentable if and only $C = N_{S}(M_{cf})$ for M a combinatorial model contegory.